Shop online at

omega.com ${ }^{\ominus}$ תOMEGA
omega.com
e-mail: info@omega.com
For latest product manuals:
omegamanual.info
ISO9001
CERTIFIED
CORPORATE QUALTY
CORPORATE QUALTY
STAMFORD, CT
$\longdiv { \text { SO } 9 0 0 2 }$
CERTIFIED
CORPORATE OUALTY
CORPORATE QUALITY
MANCHESTER, UK

Series CN 79000

omega.com

 ת:OMEGA.OMEGAnet ${ }^{\oplus}$ Online Service omega.com info@omega.com

Servicing North America:

U.S.A.:	One Omega Drive, Box 4047 ISO 9001 Certified
Stamford, CT 06907-0047 Tel: (203) 359-1660 FAX: (203) 359-7700 e-mail: info@omega.com	
Canada:	
	976 Bergar
	Laval (Quebec) H7L 5A1, Canada
	Tel: (514) 856-6928
	FAX: (514) 856-6886
	e-mail: info@omega.ca

For immediate technical or application assistance:

U.S.A. and Canada:	Sales Service: 1-800-826-6342/1-8 Customer Service: 1-800-622-2378/1 Engineering Service: 1-800-872-943
Mexico:	
	En Español: (001) 203-359-7803
	e-mail: espanol@omega.com
	FAX: (001) 203-359-7807
info@omega.com.mx	

Servicing Europe:

Czech Republic: Frystatska 184, 73301 Karviná, Czech Republic
Tel: +420 (0)59 6311899
FAX: +420 (0)59 6311114
Toll Free: 0800-1-66342
e-mail: info@omegashop.cz
Germany/Austria: Daimlerstrasse 26, D-75392 Deckenpfronn, Germany
Tel: +49 (0)7056 9398-0
FAX: +49 (0)7056 9398-29
Toll Free in Germany: 08006397678
e-mail: info@omega.de
United Kingdom: One Omega Drive, River Bend Technology Centre
ISO 9002 Certified
Northbank, Irlam, Manchester
M44 5BD United Kingdom
Tel: +44 (0)161 7776611
FAX: +44 (0)161 7776622
Toll Free in United Kingdom: 0800-488-488
e-mail: sales@omega.co.uk

[^0]
INSTRUCTIONS FOR THE CN79000 SERIES 1/32 DIN DUAL ZONE MICROPROCESSOR BASED TEMPERATURE/PROCESS CONTROL

Contents

INSTALLATION 3
WIRING 5
Wiring for Optional Inputs and Outputs 6
Wiring for 4 to 20mA Transmitter inputs 7
FRONT PANEL KEY FUNCTIONS 8
NOTATION CONVENTIONS FOR THE MENUS 10
THE HOME DISPLAY 10
ALARM TYPE AND ACTION 11
OPERATION OF SELF TUNE® FUNCTION 12
Theory of Operation 12
Program Setup and Operation 13
OPERATION AND PROGRAMMING OF OPTIONS 13
Option c 4, Serial Communication. 13
FACTORY DEFAULT PROCEDURE 14
MENU SELECTIONS 14
PRIMARY MENU 14
SECONDARY MENU 15
SECURE MENU 25
SPECIFICATIONS 35
DIAGNOSTIC ERROR MESSAGES 37
DIAGNOSTIC ERROR MESSAGES 38
DIMENSIONS 40

MODEL IDENTIFICATION

CN790

2 = Switched Voltage 5 VDC
3 = Relay

Options:
C4 RS-485 Serial Communications. Allows remote computer to read and write all control parameters.
LV $\quad 12-24 \mathrm{Vdc} / \mathrm{Vac} 50-400 \mathrm{~Hz}$ power supply (control operates on low voltage equipment).

INSTALLATION

All models are designed for mounting in an enclosed panel. Select the position desired for the instrument on the panel. If more than one instrument is required, maintain the minimum of spacing requirements as shown on the drawing opposite. Closer spacing will structurally weaken the panel, and invalidate the IP66, UL type 4 rating of the panel.

It is not necessary to remove the instrument chassis from the housing for installation. If the instrument chassis is removed from the housing, you must follow the ANSI/IPC-A-610 standard for handling electronic assemblies to avoid damage from Electro-Static Discharge (ESD). Failure to properly handle the instrument may cause damage to the instrument.

Prepare the panel by cutting and deburring the required opening(s).

From the front of the panel, slide the housing through the cutout. The housing gasket should be flat against the housing flange before installing.

From the rear of the panel slide the mounting collar over the housing. Hold the housing with one hand and using the other hand, push the collar evenly against the panel until the spring loops are slightly compressed. The ratchets will hold the mounting collar and housing in place. To remove, gently lift the ratchets and slide a piece of heavy paper or mylar sheet under each ratchet (a business card works well). Slide the collar off of the housing.

WIRING

WARNING: The inputs of the instrument are not isolated from each other. The input sources must be isolated from each other. Thermocouples MUST be of the isolated junction type. Process inputs may not share a common external ground.

FAILURE TO OBSERVE THIS WARNING MAY CAUSE DANGEROUS OR LETHAL VOLTAGES TO BE PRESENT IN THE INSTRUMENT WHICH MAY CAUSE SERIOUS INJURY OR DEATH.

DO NOT RUN SIGNAL (CLASS 2) WIRING IN THE SAME CONDUIT OR CHASE AS THE POWER WIRING. ERRATIC OPERATION OR DAMAGE TO THE INSTRUMENT CIRCUITRY WILL RESULT.

Maintain separation between wiring of sensor auxiliary in or out, and other wiring. See the "Secure Menu" for input selection.

For thermocouple input always use extension leads of the same type designated for your thermocouple.

For supply connections use No. 18 AWG wires rated for at least $75^{\circ} \mathrm{C}$. Use copper conductors only. All line voltage outputs circuits must have a common disconnect and be connected to the same pole of the disconnect.

Input wiring for thermocouple is rated CLASS 2.

Control wiring is as shown.

* Output A is assigned to Zone 1 Input and Output B is assigned to Zone 2 Input. If necessary, the input/output relationships may be reversed. See $5 P$ io in Secure Menu.

The wiring terminals for the CN 79000 are compression type. To open the wiring terminal, turn the screw for that terminal counterclockwise. Slide the wire into the terminal space. While holding the wire in place, turn the screw clockwise to tighten. Maximum torque is $0.424 \mathrm{~N} \cdot \mathrm{~m}(3.75 \mathrm{in} . \mathrm{lb}$.$) . Do not overtighten. The wire should be held$ snugly in place.

Wiring for Optional Inputs and Outputs

Wire power and outputs as shown. Wiring for options is shown below. All wiring shown below is Class 2. Shielded twisted pair is required for Option C4.

Option 992: Terminal 5 is line A (-). Terminal 6 is line $B(+)$.
Last control in chain must have 120 ohm $\pm 1 \%$ resistor across 5 and 6 .

Option 9502
Connect 12 to 24 Volt ac or dc power to terminals 11 and 12. No polarity.

Note: Industry standard designation for RS-485 lines is A and B. Some equip-
 ment manufacturers use a non-standard designation of plus and minus. The association of A to minus and B to plus is based on a sample of devices marked as plus and minus and is not intended to represent ALL such labelled devices. Final responsibility for correct identification of leads and terminals rests with the user/ installer and the manufacturer of the other device(s) installed in the system.

Wiring for $\mathbf{4}$ to 20 mA Transmitter inputs

WARNING: The inputs of the instrument are not isolated from each other. The input sources must be isolated from each other. Process inputs may not share a common external ground.

FAILURE TO OBSERVE THIS WARNING MAY CAUSE DANGEROUS OR LETHAL VOLTAGES TO BE PRESENT IN THE INSTRUMENT WHICH MAY CAUSE SERIOUS INJURY OR DEATH.

Wire power and outputs as shown above. Two-wire transmitters wire as shown below.

For three or four wire transmitters follow the wiring instructions provided with your transmitter. SULT.

The decimal point flashes when Self-Tune is operating.
Keys are illuminated when pressed. Key functions are as follows:
(D) INDEX: Pressing the INDEX key advances the display to the next menu item. May also be used in conjunction with other keys as noted below.
\triangle UP ARROW: Increments a value, changes a menu item, or selects the item to ON. The maximum value obtainable is 9999 regardless of decimal point placement.
∇ DOWN ARROW: Decrements a value, changes a menu item, or selects the item to OFF. The minimum value obtainable is -1999 regardless of decimal point placement.

$4-1$ENTER: Pressing ENTER stores the value or the item changed. If not pressed, the previously stored value or item will be retained. The display will flash once when ENTER is pressed.

UP ARROW \& ENTER: Pressing these keys simultaneously brings up the secondary menu starting at the alarm, tune, or cycle item (depending on programming). Pressingthese keys for 5 seconds will bring up the secure menu.
$\square \square$ INDEX \& DOWN ARROW: Pressing these keys simultaneously will allow backing upone menuitem, or if at the first menuitemthey will cause the display to return to the primary menu. If an alarmcondition has occurred, these keys may be used to reset the alarm.
(D) DINDEX \& ENTER: Pressing these keys simultaneously and holding them for 5 seconds allows recovery from the various error messages. The following menu items will be reset:

OPEn InP: Input error message bAd InP: Input error message
CHEC CAL: Check calibration error
Correct the problems associated with the above conditions before using these reset keys. More than one error could be present. Caution is advised since several items are reset at one time.
While in the Primary or Secondary Menu, if no key is pressed for a period of 30 seconds, the display will return to the HOME position displaying the
temperature value. While in the Secure Menu, if no key is pressed for a period of 60 seconds, the display will return to the HOME position displaying the temperature value. Outputs are disabled (turned off) when the Secure Menu is active.

NOTE: To move to the Primary Menu quickly from any other menu, press the UP ARROW \& ENTER keys followed by pressing the INDEX \& DOWN ARROW keys.

SECURITY LEVEL SELECTION

Four levels of security are provided. The display shows the current security level. To change security levels change the password value using the Δ UP ARROW and \square DOWN ARROW keys and pressing the \square ENTER key. Refer to the password table (following) for the correct value to enter for the security level desired. The SEC ; or SEC2 menu items security level may be viewed or changed at any time regardless of the present security level.

To set the access level to, for example, $\boldsymbol{\Sigma}$, at the $\boldsymbol{5 E C}$: menu item press the Δ UP ARROW key until the upper display shows the password, \boldsymbol{i} it \mathbf{i}. Press the \square ENTER key. The display will blink, and return with the level value, \boldsymbol{Z}, in the upper display.

The password values shown in the table cannot be altered, so retain a copy of these pages for future reference. This is the only reference made to password values in this instruction book.

PASSWORD TABLE
\(\left.$$
\begin{array}{|ll|c|c|}\hline \text { Menu } & \text { Security Level } \\
\text { Status }\end{array}
$$ \quad \begin{array}{c}Displayed Value

When Viewed\end{array}\right]\)| Password Value |
| :---: |
| To Enter |$|$

NOTATION CONVENTIONS FOR THE MENUS

Because of the number of features available in this control, information is included that may not apply to your specific control. All usable features are included in this book, but may not be used in your process. To increase clarity the following conventions are used:

1. Certain features, Menu Items, and functions shown in this book may or may not appear on your control, depending on other Menu Item selections. At various places in the Menus there are notes identifying Menu Items that "control" or "direct" other menu items. If you are looking for a particular menu item and can't find it, check the menu item that is its "control" for proper setting.
2. The "\#" symbol is used in two ways. It is used inside a group of characters to indicate which set point function (SP1 or SP2) is being affected. It is also used before a group of characters of a menu item to indicate that there may be more than one selection or value for that menu item. This is used for certain repeated items such as in the Ramp/Soak Program section.
3. Features that apply only to Options will be printed in Italics.

THE HOME DISPLAY

The home display is the normal display while the control is operating. If no errors or functions are active, the HOME display will indicate the Process Variable for Set Point 1 on the top display and the Process variable for Set Point 2 on the bottom.

THE MENU EDIT FUNCTION

The Menu Edit function ($\varepsilon d, k$) allows quick access to operational and set up menu items for either or both of the zones. The Edit menu item appears at the top of the Secondary Menu and allows selection of the set point parameters. Setting $\varepsilon d, \varepsilon$ to 0 allows access to only the Peak (PER ; and PERE), Valley (URL ; and URLE), Local/Remote (LOrE), and address (Rddr) menu items.

Setting $E d, t$ for either ; or ? allows access to the Secondary and Secure Menus for the zone selected.

Setting $\varepsilon d, t$ for 3 allows access to both the Secondary and Secure Menus for both Zone 1 and Zone 2. Each menu presents the menu items for Zone 1 first, followed by the menu items for Zone 2, followed by any common menu items that may be present.

Menu items that are dedicated to either Zone 1 or Zone 2 will have either a 1 or 2 in them for identification.

If $E \sigma^{\prime} t$ is set to any value other than 0 , the setting will be retained for a period of five minutes to allow handy, repeated access to that zone's menues. After five minutes of keypad inactivity, the $\varepsilon d \in$ revert to 0 , giving an added layer of security to prevent inadvertant changes to the instrument.

PROGRAMMING SET POINTS FOR ALARM FUNCTIONS

Caution: In any critical application where failure could cause expensive product loss or endanger personal safety, a redundant limit controller is required.

The CN 74000 Series allows Zone 1 and / or Zone 2 to operate as limit or alarm type outputs. This function is available on both outputs. To enable a zone output to act as an alarm or limit, Out : (for Zone 1) or Out? (for Zone2) should be set for OnOF.

When Out 'and/orOut 2 are set to OnOF, then the alarm function menu items will appear in the Secure Menu for the selected zone(s).

When Set Point Power Interrupt ($5 \# \boldsymbol{P}_{1}$) is programmed On and Set Point Reset ($5 \# r \boldsymbol{\varepsilon}$) is programmed for HoLd, the alarm will automatically reset after a power failure and on subsequent power restoration if no alarm condition is present.

If Set Point Inhibit $(\mathbf{S \#}, \boldsymbol{H})$ is selected $\mathbf{O n}_{\text {n }}$, an alarm condition is suspended upon power up until the process value passes through the alarm set point once. Alarm inhibit can be restored as if a power up took place by pressing both the INDEX and \square ENTER keys for 5 seconds.

Warning: If inhibit is on and a power failure occurs during a high alarm, on restoration of power inhibit will suppress the alarm. Do not use the Set Point Inhibit feature if a hazard may be created by this action. Be sure to test all combinations of high and low set point inhibit actions before placing control into operation.

Set Point 2 Tracking

Some applications will call for Set Point 2 to follow or 'track' the setting for Set Point 1. This can be done by changing the 5ct setting in the Secure Menu

The Factory Default setting for $52 t$ is 865 , making 592 completely independent of $5 P$:

When setting $\mathbf{S P 2}$ value when Set Point 2 is programmed as deviation (52t $=\boldsymbol{d} \boldsymbol{E}$), set the difference in value from the Set Point 1 ($5 \boldsymbol{P} \boldsymbol{i}$) desired. For example if Set Point 2 is required to be 5 degrees below the $5 P$ i, then set
 to 20 . If $5 P$ is changed, the $5 P 2$ setting will continue to hold the same relationship as originally set.

When setting SP2 value when Set Point 2 is programmed as absolute (S2t = AbS), simply set the value at which the alarm is to occur.

OPERATION OF SELF TUNE® FUNCTION

Self Tune® allows automatic selection of the necessary parameters to achieve best control operation from your CN 74000 Series control. If you are using the control output as a simple on-off function (e.g. Out iset for OnOF), none of the following will apply.

Theory of Operation

The Self Tune function calculates the $\mathcal{P b} ;, r E S i$, and $r \boldsymbol{\varepsilon} \mathcal{i}$ parameters under

 as shown in the Secondary Menu. These values are determined by measuring the response of the process connected to the control. When Self Tune is started, the control temporarily acts as an on-off control. While in this mode the control measures the overshoot and undershoot of the process, and the period of the process (the time from peak value to the next peak value). These measurements are collected over a period that lasts three periods of overshoot and undershoot. The data collected over this time is then compared and calculated into final PID and Fuzzy Logic values. The effect of Fuzzy Logic on the process is still controlled by the $\mathcal{F}, \boldsymbol{i}$ and F, ε^{2} (fuzzy intensity) settings.
 have no effect.

The calculations forZone 1 and Zone2 are completely independent. Eachzone has separate Self Tune and Fuzzy Logic parameters.

The calculations for the PID values are the same as used in the standardZiegler - Nichols equations that have been recognized as standard for decades.

The only modification to the application of the Ziegler - Nichols equations is controlled by the $d F C$: and $d F C$ menu items. These menu items control the amount of rate (derivative) that is applied. A dFC $:$ or $d F E 2$ setting of 3 (factory default) or less allows for less damping. A dFC $:$ or $d F C 2$ setting of 4 allows for critical damping as set forth in Ziegler - Nichols. A dFE: or dFE2 setting of \boldsymbol{S} or more allows over damping of the process.

Program Setup and Operation

In the secondary menu settun iortund to SELF. Skipirn i/Lrn己 and check to make sure that $\mathbf{d F C}: /$ / $\mathbf{F F}[\boldsymbol{2}$ is (are) set to the desired value. Back up to Lrni/Lrne and set to $Y E S$. The control will begin the Self Tune function. While the Self Tune function is active, the right hand decimal point on the lower display will blink. When Self Tune is complete, the blinking will stop.

After Self Tune is complete, the tun $\mathrm{i} /$ tund setting(s) automatically switch(es) to \boldsymbol{P} id. This allows examination and / or modification of the values calculated. We recommend that you do not change the calculated values unless you have a firm understanding of the parameters involved and their function. For more information on PID tuning, please contact your supplier.

OPERATION AND PROGRAMMING OF OPTIONS

Option C4, Serial Communication.

The serial communications option allows the control to be written to and read from a remote computer or other similar digital device. Communication is allowed through a RS-485 (Option c 4) port.

See Wiring for Optional Inputs and Outputs for information on wiring the communication lines. Wiring for the RS-485 is run from control to control in a daisy chain fashion with a termination resistor (120 ohms) across the transmit and receive terminals of the last control in the chain.

Select the control address and communication baud rate with the Rodr and bridd menu items in the Secure Menu. The address for Zone 1 will be the address selected. The address for Zone 2 will be the address selected for Zone 1 plus one. For example, if Rddr is set to \mathbb{Z}, Zone 1 parameters will be addressed through address \mathbb{E} and Zone 2 parameters will be addressed through address if.

THE BAUD RATE AND ADDRESS MENU ITEMS WILL TAKE EFFECT ON THE NEXT POWER UP OF THE CONTROL. BE SURE TO POWER CYCLE THE CONTROL BEFORE USING THE NEW BAUD RATE AND ADDRESS.

In operation, you have the option of preventing a write command from the host computer. To prevent the hostfrom writing to the control change the LOr ε menu item in the Secondary Menu to $\mathbf{L O C}$. To allow the host to write commands to the control set $\mathcal{L} \boldsymbol{\mathcal { r }} \boldsymbol{E}$ to $\boldsymbol{r} \mathcal{E}$. (The host does have the ability to change the $\operatorname{LOr} \boldsymbol{E}$ state, but it is not automatic.)

If your system depends on constant reading or writing to and from the host, you may wish to set the No Activity Timer (nit) to monitor the addressing of the control. When the $\operatorname{LOr} \boldsymbol{E}$ is set to $\boldsymbol{r} \mathcal{E}$ and the $\boldsymbol{n} \boldsymbol{R} \boldsymbol{t}$ is set to any value other than ifF, the control will expect to be addressed on a regular basis. If the control is not addressed in the time set by the value of nAt, then the control will display the error message $\operatorname{CHEC} \operatorname{LO} \boldsymbol{E}$. To clear the message set $\operatorname{LO} \boldsymbol{E}$ to $\mathcal{L O C}$.

FACTORY DEFAULT PROCEDURE

If for any reason you wish to restore the factory settings use the following procedure.

1. Turn off power to control
2. Turn on power to control
3. While control is performing SELF $\in E S t$, press and hold the $C D$ INDEX and \square ENTER keys.
4. The control will display the ROM ID code. Press \square INDEX.
5. The control will display $\boldsymbol{F A C t}$ dFLE. If you wish to just restore factory settings, Press \square ENTER and ∇ DOWN ARROW at the same time. The control will be reset to the original factory settings.
6. Press D INDEX to display 0 Pt. If your control is equipped with an option, press the UP ARROW to display the option number. If the number is flashing, press \square ENTER. An enabled option does not flash.
7. Press INDEX to display RCPt. Select $\boldsymbol{Y} E S$ or no.
yES Changes are accepted and control re-boots.
no Changes are discarded and control re-boots.
8. Press $ص$ ENTER.

The control will re-initialize with Factory Default settings.

PRIMARY MENU

Press INDEX to advance to the next menu item. Press UP ARROW or DOWN ARROW to change the value in the display. Press ENTER to retain the value.

SP : Set Point 1 Adjust, Control Point 1.
5P2 Set Point 2 Adjust, Control Point 2.

SECONDARY MENU

Hold UP ARROW \& ENTER. Press INDEX to advance to the next menu item. Press UP ARROW or DOWN ARROW to change the value in the display. Press ENTER to retain the value.

Ed,t Edit Set Point parameters: Select $0, i, 2$, or 3 .
0 Edit function is off.
i Edit Secondary and Secure Menus for Set Point 1.
$2 \quad$ Edit Secondary and Secure Menus for Set Point 2.
3 Edit Secondary and Secure Menus for both Set Points in sequence (menu items for Set Point 1 followed by menu items for Set Point 2).

If $\varepsilon d, \varepsilon$ is set to 0 , begin.
If ε_{d} it is set to $:$ or 3 , jump to Out $;$ on page 17.
If εd,t is set to $\boldsymbol{2}$, jump to Out $己$ on page 21.
PER : The Peak feature stores the highest input the control has measured for Zone 1 since the last reset or Power On. At Power On, PER ; is reset to the present input value. To manually reset the value $\boldsymbol{P E R}$: must be in the lower display. Press the ENTER key to reset. PERI will be reset and display the present input value.

URL 1 The Valley feature stores the lowest input the Instrument has measured for Zone 1 since the last reset or Power On. At Power On, URL ; is reset to the present input. To manually reset the value URL I must be in the lower display. Press the ENTER key. URL : will be reset and display the present input value.

PER2 The Peak feature stores the highest input the control has measured for Zone 2 since the last reset or Power On. At

Power On, PERE is reset to the present input. To manually reset the value PER2 must be in the lower display. Press the ENTER key to reset. $\boldsymbol{P E R 2}$ will be reset and display the present input value.

URLZ The Valley feature stores the lowest input the Instrument has measured for Zone 2 since the last reset or Power On. At Power On, URL \boldsymbol{Z} is reset to the present input. To manually reset the value URL 2 must be in the lower display. Press the ENTER key. URL? will be reset and display the present input value.

LOrE (Option c 4, Serial Communications) Local / Remote Status: Select $\mathcal{C L}$ or $r \boldsymbol{E}$.
LOC The host computer is advised not to send remote commands. Any write commands sent to the controls will be rejected.
$r \boldsymbol{E} \quad$ The host computer is allowed to send write commands.If the control is not addressed within the time set in the nit (No Activity Timer, see Secure Menu) the CHEC Lor \mathcal{E} error message will be displayed.

Rodr (Option C 4, Serial Communications) Control Address: Set from ito $3 F=$. This number (hexadecimal, base 16) must match the address number used by the host computer. Viewed only in this menu. The value displayed is for Zone 1. The address for Zone 2 is the value for Zone 1 plus one. To change this parameter, see Rodr in the Secure Menu.

End of Secondary Menu when εd,t is set to 0 .

If $\varepsilon d, t$ is set to $:$ or 3 , begin.
If εd it is set to $己$, jump to Out 2 on page 20.
Out: Output selection: Select OnOF, itP, or iPul.
OnOF A setting of OnOF allows the control to operate as a simple on/off mode. This setting forces the control to turn off at set point, and on at the set point plus the differential ($5 \boldsymbol{P} \boldsymbol{i d}$). When selected, the Out $\mathbf{t / O n O F}$ menu item is followed by \#\#\#\#/SP id, and the tun $: \mathrm{P}_{\mathrm{b}} \mathrm{i}$, rES i, ofS i , rtE i , and RrSi selections in the Secondary menu and the 5 IOL and $S \mathbf{I O H}$ selections in the Secure menu are suppressed.
SP id Set Point On-Off Differential (hysteresis). Select ito 9999 (direct acting), or - ito -9999 (reverse acting). This value will be negative for reverse acting set points, and positive for direct acting outputs. Set the value for the amount of difference between the turn off point (set point) and the turn on point. The following drawing shows output behavior for reverse and direct action.

\#\#t \boldsymbol{P} Time Proportioning Cycle Time. Select it \boldsymbol{P} to $80 t$ P.
it \boldsymbol{P} A setting of it \boldsymbol{P} is recommended for solid state outputs (SSR, DC SSR, or 5VDC).
2tP to 80t? Time Proportioning Control is adjustable in 1 second steps. Recommended for mechanical outputs (relays, solenoids, etc.). For best contact life, a time should be selected as long as possible without causing the process to wander.
\#Pul Pulsed Time Proportioning Output: Select PPul to $7 P_{u l}$. \quad Pui $=$ Linear and $7 P_{u l}=$ most nonlinear. Changes output linearity for use in cooling applications or for an extremely fast response processes. At the center of the proportional band, a pulse
value of 1 provides an output of one second on and one second off (50\% output). A pulse value of 2 provides an output of one second on and two seconds off (33\% output). Output at center of band equals one second on, $2^{\text {(pulse value-1) }}$ seconds off.
ProP For Current (Code 5) outputs only.
tun: Tuning Choice: Select SELF, P d, SLO, nor, or FRSt.
self The instrument will evaluate the Process and select the PID values to maintain good control. Active for SP1 only.
Lrn: Select $Y E S$ or no
yES Start Learning the Process. After the process has been learned the menu item will revert to no.
dFC: Damping factor, Select OFF, ito ?. Sets the ratio of Rate to Reset for the SELF tunE mode. $\boldsymbol{7}=$ most Rate. Factory set to 3. For a fast response process the value should be lowered (less Rate). For a slower process the value should be increased (more Rate).
P id Manually adjust the PID values. PID control consists of three basic parameters, Proportional Band (Gain), Reset Time (Integral), and Rate Time (Derivative).
Pb : Proportional Band (Bandwidth). Select ito $9999^{\circ} \mathrm{F},{ }^{\circ} \mathrm{C}$, or counts.
rES: Automatic Reset Time. Select OFF, $0 . \boldsymbol{i}$ to 99.9 minutes. Select 0 OFF to switch to 0 OS \boldsymbol{i}.

OFS : Manual Offset Correction Select OFF, ©. ito 99.9%. Select $0 F F$ to switch to rES :
rtE: Rate Time. Select OFF, 0.0 : to 99.99 min utes, Derivative.
Si0 PID values are preset for a slow response process.
nor PID values are preset for a normal response process.
FRSt PID values are preset for a fast response process.
RrS: Anti- Reset Windup Feature: Select On or off.
On Reset Offset value will be cleared to 0% when the process input is not within the Proportional Band. process input is not within the Proportional Band.

Ret : Approach Rate Time: Select OFF, 0.0 ito 99.99 minutes. The function defines the amount of Rate applied when the input is outside of the Proportional Band. The Rirt t time and the rtE itime are independent and have no effect on each other. To increase damping effect and reduce overshoot set the approach rate time for a value greater than the natural rise time of the process (natural rise time = process value time to set point).
F. : Fuzzy Logic Intensity: Select 0 to 100%. 0% is OFF (disables Fuzzy Logic). The function defines the amount of impact Fuzzy Logic will have on the output. If $\boldsymbol{F} \boldsymbol{\in} \boldsymbol{i}$ is set to $\boldsymbol{U}, \boldsymbol{F b d} \boldsymbol{i}$ and $\operatorname{Frt} \boldsymbol{i}$ below will not appear.

Fbd: Fuzzy Logic Error Band: Select 0 to $4000^{\circ} \mathrm{F},{ }^{\circ} \mathrm{C}$, or counts. Sets the bandwidth of the Fuzzy Logic. Set Fbd \mathbf{t} equal to PID proportional band ($\mathcal{P b}$;) for best results. Self Tune, when used, calculates this value. Will not appear if \boldsymbol{F}, \boldsymbol{i} is 0 .

Fre : Fuzzy Logic Rate of Change: Select 0.00 to 99.99 counts/ second. For best initial setting, find the count/second change of process value near Set Point 1 with output ON (100% output). Multiply this value by 3 . Set Frt \boldsymbol{i} to this calculated value. Self Tune, when used, calculates this value. Will not appear if $\boldsymbol{F}, \boldsymbol{i}$ is $\boldsymbol{0}$.

PER: The Peak feature stores the highest input the control has measured for Zone 1 since the last reset or Power On. At Power On, PER ; is reset to the present input value. To manually reset the value $\boldsymbol{P E R} \boldsymbol{I}$ must be in the lower display. Press the ENTER key to reset. PER; will be reset and display the present input value.

URL: The Valley feature stores the lowest input the Instrument has measured for Zone 1 since the last reset or Power On. At Power On, URL \boldsymbol{i} is reset to the present input. To manually reset the value URL : must be in the lower display. Press the ENTER key. URL : will be reset and display the present input value.
inc: Input Correction: Select -500 to $500^{\circ} \mathrm{F},{ }^{\circ} \mathrm{C}$, or counts. This feature allows the input value to be changed to agree with an external reference or to compensate for sensor error. Note: init is reset to zero when the input type is changed, or when decimal position is changed.

Fi: Digital Filter: Select 0 FF, \boldsymbol{i} to 99 . In some cases the time constant of the sensor, or noise could cause the display to jump enough to be unreadable. A setting of 2 is usually sufficient to provide enough filtering for most cases, (z represents approximately a 1 second time constant). When the 0.1 degree resolution is selected this should be increased to 4 . If this value is set too high, controllability will suffer.

LPb : Loop Break Protection: Select ©FF, ito 9999 seconds. If, during operation, the output is minimum (0%) or maximum (100%), and the input moves less than $5^{\circ} \mathrm{F}\left(3^{\circ} \mathrm{C}\right)$ or 5 counts over the time set for 1 Pb , the $\mathbf{L 0 0 P}$ bid message will appear. The loop break error can be reset by pressing the ENTER key when at the tot menu item. The INDEX \& ENTER keys may also be used.

If $\varepsilon d, t$ is set to \boldsymbol{i}, jump to Lor ε on page 24.
If $\varepsilon d, \varepsilon$ is set to 3 , continue.

If $\varepsilon d, t$ is set to $:$, jump to Lor \mathcal{E} on page 24.
If $\varepsilon d, \varepsilon$ is set to 3 , continue.
If $\varepsilon d, t$ is set to 2 , begin.
Butz Output selection: Select OnOF, itP, or iPul.
OnOF A setting of OnOF allows the control to operate as a simple on/off mode. This setting forces the control to turn off at set point, and on at the set point plus the differential (5P2d). When selected, the Out 2/GnOF menu item is followed by \#\#\#\#/SP2d, and the tunl, Pb己, rES2, ofS2, rtE2, and RrS2 selections in the Secondary menu and the 520 L and 520 H selections in the Secure menu are suppressed.
sPed Set Point On-Off Differential (hysteresis). Select \boldsymbol{i} to 9999 (direct acting), or - \mathbf{i} to - 9999 (reverse acting). This value will be negative for reverse acting set points, and positive for direct acting outputs. Set the value for the amount of difference between the turn off point (set point) and the turn on point. The following drawing shows output behavior for reverse and direct action.

\#\#t \boldsymbol{P} Time Proportioning Cycle Time. Select it \boldsymbol{P} to $80 t$.
it \boldsymbol{P} A setting of $\boldsymbol{i} \boldsymbol{P} \boldsymbol{P}$ is recommended for solid state outputs (SSR, DC SSR, or 15VDC).
2tP to $80 t$ P Time Proportioning Control is adjustable in 1 second steps. Recommended for mechanical outputs (relays, solenoids, etc.). For best contact life, a time should be selected as long as possible without causing the process to wander.
\#Pui Pulsed Time Proportioning Output: Select PPul to $7 P_{u l}$. $\operatorname{PPuL}=$ Linear and $7 P_{u l}=$ most nonlinear. Changes output linearity for use in cooling applications or for an extremely fast response processes. At the
center of the proportional band, a pulse value of 1 provides an output of one second on and one second off (50\% output). A pulse value of 2 provides an output of one second on and two seconds off (33% output). Output at center of band equals one second on, $2^{\text {(pulse value-1) }}$ seconds off.
tund Tuning Choice: Select SELF, Pid, St0, nor, or $\boldsymbol{F R S t}$.
sElf The Controller will evaluate the Process and select the PID values to maintain good control.
Lrad Select $Y E S$ or no
yE5 Start Learning the Process. After the process has been learned the menu item will revert to no.
no Learning will stay in present mode.
dFC2 Damping factor, Select OFF, \boldsymbol{i} to 7. Sets the ratio of Rate to Reset for the SELF tunt mode. $\boldsymbol{7}=$ most Rate. Factory set to 3. For a fast response process the value should be lowered (less Rate). For a slower process the value should be increased (more Rate).
P id Manually adjust the PID values. PID control consists of three basic parameters, Proportional Band (Gain), Reset Time (Integral), and Rate Time (Derivative).
Pb2 Proportional Band (Bandwidth). Select ito $9999^{\circ} \mathrm{F},{ }^{\circ} \mathrm{C}$, or counts.
rE52 Automatic Reset Time. Select OFF, ©. \boldsymbol{i} to 99.9 minutes. Select OFF to switch to 0 OFS?

OFS2 Manual Offset Correction Select OFF, O. ito 99.9\%. Select off to switch to rESS.
rtES Rate Time. Select OFF, 0.0 ito 99.99 min utes, Derivative.
Sio PID values are preset for a slow response process.
nor PID values are preset for a normal response process.
fRSt PID values are preset for a fast response process.
Rr 52 Anti- Reset Windup Feature: Select On or OFF.
On Reset Offset value will be cleared to 0% when the process input is not within the Proportional Band. process input is not within the Proportional Band.

Rrt2 Approach Rate Time: Select OFF, 0.0 ito 99.99 minutes. The function defines the amount of Rate applied when the input is outside of the Proportional Band. The Rrea time and the $r E E 己$ time are independent and have no effect on each other. To increase damping effect and reduce overshoot set the approach rate time for a value greater than the natural rise time of the process (natural rise time = process value time to set point).
F. 2 Fuzzy Logic Intensity: Select 0 to 100%. 0% is OFF (disables Fuzzy Logic). The function defines the amount of impact Fuzzy Logic will have on the output. If $\boldsymbol{F}, \boldsymbol{2}$ is set to $\boldsymbol{U}, \boldsymbol{F b d} \boldsymbol{Z}$ and $\boldsymbol{F r t} \boldsymbol{Z}$ below will not appear.

Fbd? Fuzzy Logic Error Band: Select 0 to $4000^{\circ} \mathrm{F},{ }^{\circ} \mathrm{C}$, or counts. Sets the bandwidth of the Fuzzy Logic. Set Fbod equal to PID proportional band (Pb?) for best results. Self Tune, when used, calculates this value automatically. Will not appear if $\boldsymbol{\mathcal { F }}, \boldsymbol{\mathcal { Z }}$ is set to $\boldsymbol{0}$.

Frt2 Fuzzy Logic Rate of Change: Select 0.00 to 99.99 counts/ second. For best initial setting, find the count/second change of process value near set point 1 with output ON (Output is 100%). Multiply this value by 3 . Set Frt ? to this calculated value. Self Tune, when used, calculates this value automatically. Will not appear if $\boldsymbol{F}, \boldsymbol{己}$ is set to $\boldsymbol{0}$.

PER2 The Peak feature stores the highest input the control has measured for Zone 2 since the last reset or Power On. At Power On, PERE is reset to the present input. To manually reset the value PER2 must be in the lower display. Press the ENTER key to reset. $\boldsymbol{\rho \varepsilon R 2}$ will be reset and display the present input value.

URLZ The Valley feature stores the lowest input the Instrument has measured for Zone 2 since the last reset or Power On. At Power On, URL \boldsymbol{Z} is rese to the present input. To manually reset the value URL 2 must be in the lower display. Press the ENTER key. URL 2 will be reset and display the present input value.
inc2 Input Correction: Select -500 to $5000^{\circ} \mathrm{F},{ }^{\circ} \mathrm{C}$, or counts. This feature allows the input value to be changed to agree with an external reference or to compensate for sensor error. Note: ine is reset to zero when the input type is changed, or when decimal position is changed.

Fil2 Digital Filter: Select OFF, \boldsymbol{i} to 99 . In some cases the time constant of the sensor, or noise could cause the display to jump enough to be unreadable. A setting of 2 is usually sufficient to provide enough filtering for most cases, (2 represents approximately a 1 second time constant). When the 0.1 degree resolution is selected this should be increased to $\%$. If this value is set too high, controllability will suffer.

LPb? Loop Break Protection: Select OFF, : to 9999 seconds. If, during operation, the output is minimum (0%) or maximum (100%), and the input moves less than $5^{\circ} \mathrm{F}\left(3^{\circ} \mathrm{C}\right)$ or 5 counts over the time set for Lpb2, the L00P bRd message will appear. The loop break error can be reset by pressing the ENTER key when at the $: P 62$ menu item. The INDEX \& ENTER keys may also be used.

The following Menu Items operate on the entire instrument. There is no Zone or Set Point distinction. They will appear in the $\varepsilon_{d, t}: \varepsilon_{d, t}$, and $\varepsilon_{d, t} 3$ menus.

LOrE (Option c 4, Serial Communications) Local / Remote Status: Select $\mathbf{Z O C}$ or r E.
LOC The host computer is advised not to send remote commands. Any write commands sent to the controls will be rejected.
$r \varepsilon \quad$ The host computer is allowed to send write commands.If the control is not addressed within the time set in the nat (No Activity Timer, see Secure Menu) the CHEC LorE error message will be displayed.

Rodr (Option C4, Serial Communications) Control Address: Read value from 'to $3 F F$. This number (hexadecimal, base 16) must match the address number used by the host computer. Viewed only in this menu. The value displayed is for Zone 1. The address for Zone 2 is the value for Zone 1 plus one (e.g. if Rodr is set to $\mathbf{i 7}$, Zone 1 is assigned to
address 17 and Zone 2 is assigned to address 18). To change this parameter, see Rodr in the Secure Menu.

SECURE MENU

Hold UP ARROW \& ENTER for 5 Seconds. Press INDEX to advance to the next menu item. Press UP ARROW or DOWN ARROW to change the value in the display. Press ENTER to retain the value. OUTPUTS ARE DISABLED (TURNED OFF) WHILE THE INSTRUMENT IS IN SECURE MENU.

If εd, ε is set to 0 , begin.
If εd, $\begin{gathered}\text { is set to } ; \text { or } 3 \text {, jump to SEC }: \text { on page } 26 . ~ . ~\end{gathered}$ If εd it is set to 2 , jump to $5 E \subset 2$ on page 29.

Note: There are no standard menu items for the Secure Menu when εd it is set to 0 .

Bodr (Option c 4, Serial Communications) Control Address: Select from 'to $3 F E$. This number (hexadecimal, base 16) must match the address number used by the host computer. The value displayed is for Zone 1. The address for Zone 2 is the value for Zone 1 plus one (e.g. if Rodr is set to $\mathbf{i 7}$, Zone 1 is assigned to address $\mathbf{i 7}$ and Zone 2 is assigned to address 18). Addresses IOO, 200 , and 300 are reserved for Factory use.
sriva (Option C4, Serial Communications) Communication Baud Rate: Select 300, $\mathbf{1 2 0 0}, 2400$, 4800, 9600 , or 19200 . This number must match the baud rate used by the host computer.
nit (Option C4, Serial Communications) No Activity Timer: Set from OFF or ito 99 minutes.
t-99 Maximum time between host computer accesses. If timer counts to 0 , ᄃHEC LorE will be displayed.
off No Activity Timer function is disabled.
End of Secure Menu when $\varepsilon_{d} t$ is set to 0 .

If $\varepsilon d, t$ is set to : or $\mathcal{3}$, begin.
If $\varepsilon d, t$ is set to $己$, jump to $5 E[己$ on page 30 .
5EC: Security Code: See the Security Level Selection and the Password Table in this manual, in order to enter the correct password.
inP 1 Input Type: Select one of the following. Refer to the Input wiring section for the proper wiring.
InputGroup $1 \begin{array}{ll}J-\text { IC } & \text { Type "J" Thermocouple } \\ \text { GA } & \text { Type "K" Thermocouple } \\ \varepsilon- & \text { Type "E" Thermocouple } \\ \text { L- } & \text { Type "L" Thermocouple } \\ n- & \text { Type "N" Thermocouple }\end{array}$

05P: Zero Suppression: Select On or OFF. Only with Current and Voltage input types.
OFF The input range will start at 0 (zero) Input.
In The input range will start at 4.00 mA or 2.00 V .
Unt I F, C or nonE.
$F \quad{ }^{\circ} \mathrm{F}$ lamp is On and temperature inputs will be displayed in degrees Fahrenheit.
[$\quad{ }^{\circ} \mathrm{C}$ lamp is On and temperature inputs will be displayed in degrees Celsius.
nonE Both the ${ }^{\circ} \mathrm{F}$ and ${ }^{\circ} \mathrm{C}$ lamps will be Off. This selection is only available with Current and Voltage Inputs.

Note: If both Set Point 1 and Set Point 2 are set for temperature inputs, they must both be set for the same scale. While it is possible to set one input as degrees F and the other degrees C, as there is only one descriptor, one of the displays is likely to be mis-read. If one Set Point is set for process input, you may select to display either the temperature descriptor or neither (nonE).
dPt : Decimal Point Positioning: Select 0,0.0,0.00, or 0.000. On temperature type inputs this will only effect the Process Value, $5 P$ i, and ini: i. For Current and Voltage Inputs all Menu Items related to the Input will be affected.
0 No decimal Point is selected. This is available for all Input Types.
0.0 One decimal place is available for Type J, K, E, T, L, RTD's, Current and Voltage Inputs.
0.00 Two decimal places is only available for Current and Voltage Inputs.
0.000 Three decimal places is only available for Current and Voltage inputs.
int : Input Fault Timer: Select ©FF, $0 . \boldsymbol{i}$ to $\mathbf{5 4 0 . 0} \mathbf{~ m i n u t e s . ~ W h e n - ~}$ ever an Input is out of range (ift or OFI displayed), shorted, or open the timer will start. When the time has elapsed, the instrument will disable the output(s) and display bRd inP. If off is selected, the Input Fault Timer will not be recognized (time $=$ infinite).

SEn: Sensor Rate of Change: Select OFF, \boldsymbol{i} to $4000{ }^{\circ} \mathrm{F},{ }^{\circ} \mathrm{C}$, or counts per 1 second period. This value is usually set to be slightly greater than the fastest process response expected during a 1 second period, but measured for at least 2 seconds. If the process is faster than this setting, the SEn: bid error message will appear. The outputs will then be turned off. This function can be used to detect a runaway condition, or speed up detection of an open thermocouple. Use the INDEX \& ENTER keys to reset.

SCL : Scale Low: Select 100 to 9999 counts below SCH : The total span between SCL ; and SCH : must be within 11998 counts. Maximum setting range is - 1999 to 9999 counts. Minimum span is 100 counts. For Current and Voltage inputs, this will set the low range end. Viewable only for Thermocouple and RTD ranges.

SCH : Scale High: Select 100 to 9999 counts above SCL : The total span between SCL i and SCH i must be within 11998 counts. Maximum setting range is - 999 to +9999 counts. Minimum span is 100 counts. For Current and Voltage inputs, this will set the high range end. Viewable only for Thermocouple and RTD ranges.

5PL : Set Point Low: Select from the lowest input range value to SPH1 value. This will set the minimum 5p; value that can be entered. The value for 5ρ; will not stop moving when this value is reached. Attempting to set a value for $5 P$; lower than SP: ; will result in a CHEC SP i error. The value will not be accepted.

SPH: Set Point High: Select from the highest input range value to SPL1 value. This will set the maximum 5ρ; value that can be entered. The value for SP1 will not stop moving when this value is reached. Attempting to set a value for $5 P$; higher than SPH ; will result in a EHEC 59 ; error. The value will not be accepted.

5 ist Set Point State: Select dir or $\boldsymbol{r} \boldsymbol{\varepsilon}$.
dir Direct Action. As the input increases the output will increase. Most commonly used in cooling processes.
$r \boldsymbol{\varepsilon} \quad$ Reverse Action. As the input increases the output will decrease. Most commonly used in heating processes.

If Out : is set for \#\#t P, \#PiL, or Prop, then S1OL and S1OH (following) appear. If Out \boldsymbol{i} is set for OnOF, then skip to \boldsymbol{S} ir \mathcal{E}.

5:0L Set Point Output Low Limit: Select 0 to 90% but not greater than $5 \mathbf{i O H}$. This item limits the lowest output value. This is useful for adding a bias to the process when needed. Factory set to 0 for output codes $1,2,3$, and 8 . Factory set to 20 for output code 5 (20% output equals 4 mA output).

SiOH Set Point Output High Limit: Select i0 to $\mathbf{1 0 0 \%}$ but not less than $5 \mathbf{i O L}$ for output codes $1,2,3$, or 8 . Select 10 to 102% but not less than S10L for output code 5 . This item allows setting the maximum output limit. This is useful with processes that are over powered. Adjustment to 102% allows setting current output to force a full on condition for output
devices which do not have bias adjustments. Factory set to 100 for all output codes.

If Out \boldsymbol{i} is set for \#\#t \boldsymbol{P}, \#PuL, or ProP,then skip to 5 it \boldsymbol{P}.
SirE Set Point Reset. Select OnOF or Hold.
OnOF Control will automatically reset when process passes back through 5P id.
Hoid Manual Reset. Reset (acknowledge) by simultaneously pressing the INDEX \& DOWN ARROW keys for 5 seconds.

SiP, Set Point Power Interrupt. Select On or ©FF.
On Alarm Power Interrupt is On. Control will automatically reset on power-up if no alarm condition exists.
off Alarm Power Interrupt is ©FF. Control will powerup in alarm condition regardless of condition of process.

Si,H Set Point Inhibit: Select On or OFF.
On Alarm Inhibit is On. Alarm action is suspended until the process value first enters a non-alarm condition.
off Alarm Inhibit is OFF.

5 it P Set Point Lamp: Select O on or OoFF.
0 on Lamp ON when Output is Bn .
Soff Lamp OFF when Output is On.

If $\varepsilon d, t$ is set to $:$, jump to Rodr on page 33.
If $\varepsilon d, t$ is set to 3 , continue.

If $E d, t$ is set to 1 , jump to $5 P$ io on page 33.
If $\varepsilon d, t$ is set to \exists, continue.
If $\varepsilon d, t$ is set to 2 , begin.
5EL2 Security Code: See the Security Level Selection and the Password Table in this manual, in order to enter the correct password.
inP2 Input Type: Select one of the following. Refer to the Input wiring section for the proper wiring.
Input Group $1\left[\begin{array}{cc}J-I C & \text { Type " "N" Thermocouple } \\ \text { CA } & \text { Type "K" Thermocouple } \\ \varepsilon- & \text { Type "E" Thermocouple } \\ \boldsymbol{L} & \text { Type "L" Thermocouple } \\ \text { n- } & \text { Type "N" Thermocouble }\end{array}\right.$
Unt2 F, E or nonE.
F $\quad{ }^{\circ} \mathrm{F}$ lamp is On and temperature inputs will be displayed in degrees Fahrenheit.
c $\quad{ }^{\circ} \mathrm{C}$ lamp is On and temperature inputs will be displayed in degrees Celsius.
nonE Both the ${ }^{\circ} \mathrm{F}$ and ${ }^{\circ} \mathrm{C}$ lamps will be Off. This selection is only available with Current and Voltage Inputs.

Note: If both Set Point 1 and Set Point 2 are set for temperature inputs, they must both be set for the same scale. While it is possible to set one input as degrees F and the other degrees C, since there is only one descriptor, one of the displays is likely to be mis-read. If one Set Point is set for process input, you may select to display either the temperature descriptor or neither (nonE).
$d P t ?$
Decimal Point Positioning: Select $0,0.0$. This will only effect the Process Value, SP1, SP2, and $\operatorname{InC} 1 \| \operatorname{lnC} 2$.
$0 \quad$ No decimal Point is selected.
0.0 One decimal place is available for Type J, K, E, T, L Inputs.
int \boldsymbol{Z} Input Fault Timer: Select $\boldsymbol{O F F} \boldsymbol{0}$. ; to $540 . \boldsymbol{\sigma}$ minutes. Whenever an Input is out of range (UFL or OFL displayed), shorted, or open the timer will start. When the time has elapsed, the instrument will disable the output(s) and display bRd inP. If OFF is selected, the Input Fault Timer will not be recognized (time = infinite).

5En己 Sensor Rate of Change: Select OFF, ; to $4000{ }^{\circ} \mathrm{F},{ }^{\circ} \mathrm{C}$, or counts per 1 second period. This value is usually set to be slightly greater than the fastest process response expected during a 1 second period, but measured for at least 2 seconds. If the process is faster than this setting, the $5 E_{n}$? bRd error message will appear. The outputs will then be turned off. This function can be used to detect a runaway condition, or speed up detection of an open thermocouple. Use the INDEX \& ENTER keys to reset.

SC:2 Scale Low: Select $\mathbf{1 0 0}$ to $\mathbf{9 9 9 9}$ counts below SCHC. The total span between SCL \boldsymbol{Z} and SCH2 must be within 11998 counts. Maximum setting range is -1999 to +9999 counts. Minimum span is 100 counts. For Current and Voltage inputs, this will set the low range end. Viewable only for Thermocouple and RTD ranges.

SCH2 Scale High: Select 100 to 9999 counts above SCL2. The total span between SCL2 and SCH2 must be within 11998 counts. Maximum setting range is -1999 to +9999 counts. Minimum span is 100 counts. For Current and Voltage inputs, this will set the high range end. Viewable only for Thermocouple and RTD ranges.

SPL2 Set Point Low: Select from the lowest input range value to SPH1 value. This will set the minimum $5 P 2$ value that can be entered. The value for $5 P 2$ will not stop moving when this value is reached. Attempting to set a value for 502 lower than SPI? will result in a CHEC $5 P 2$ error. The value will not be accepted.

SPre Set Point High: Select from the highest input range value to SPL2 value. This will set the maximum $5 P 2$ value that can be entered. The value for SP2 will not stop moving when this value is reached. Attempting to set a value for $5 P 2$ higher than SPHZ will result in a CHEC SPE error. The value will not be accepted.

525t Set Point State: Select dir or \boldsymbol{r} E.
dir Direct Action. As the input increases the output will increase. Most commonly used in cooling processes.
$r \varepsilon \quad$ Reverse Action. As the input increases the output will decrease. Most commonly used in heating processes.

If Out 2 is set for \#\#t \boldsymbol{P}, or \#PUL, then $5 \mathbf{S O H}$ and 520 OH (following) appear. If Out \boldsymbol{Z} is set for OnOF, then skip to $\operatorname{S2r} \boldsymbol{E}$.

520 L Set Point Output Low Limit: Select 0 to 90% but not greater than $\mathbf{5 2 0 H}$. This item limits the lowest output value. This is useful for adding a bias to the process when needed. Factory set to 0 for output codes $1,2,3$, and 8 . Factory set to 20 for output code 5 (20% output equals 4 mA output).

S20H Set Point 1 Output High Limit: Select 10 to 100% but not less than S2OL for output codes 1, 2, 3, or 8. Select 10 to 102% but not less than 520 L for output code 5 . This item allows setting the maximum output limit. This is useful with processes that are over powered. Adjustment to $: 102 \%$ allows setting current output to force a full on condition for output
devices which do not have bias adjustments. Factory set to 100 for all output codes.

If Out2 is set for \#\#t \boldsymbol{P}, \#Put, or ProP,then skip to S2t P.
STrE Set Point Reset. Select OnOF or Hold.
OnOF Control will automatically reset when process passes back through 5P2d.
Hold Manual Reset. Reset (acknowledge) by simultaneously pressing the INDEX \& DOWN ARROW keys for 5 seconds.

52P, Set Point Power Interrupt. Select On or ©FF. On Alarm Power Interrupt is On. Control will automatically reset on power-up if no alarm condition exists.
off Alarm Power Interrupt is OFF. Control will powerup in alarm condition regardless of condition of process.

S2,H Set Point Inhibit: Select On or OFF.
On Alarm Inhibit is On. Alarm action is suspended until the process value first enters a non-alarm condition.
off Alarm Inhibit is OFF.

S2t? Set Point Lamp: Select O on or OoFF. O on Lamp ON when Output is ON.
OoFF Lamp OFF when Output is ON.
S2t Set Point 2 type: Select $\boldsymbol{R} \boldsymbol{B}$ S or $\boldsymbol{d} \boldsymbol{E}$.
RbS Absolute SP2. SPD is independent of $5 P$ i, and may be set anywhere between the limits of SPLZ and sphe.
dE Deviation SP2. SP2 is set as a deviation from SP i, and allows $5 P 2$ to retain its relationship with $5 P$; when $5 P$ i is changed.
Note: The SPLZ and SPH2 settings must be set to correspond with the SPL : and SPH: settings. If not, a CHEC SP2 error may be generated by a change of $5 P$ i.

The following Menu Items operate on the entire Instrument. There is no Set Point distinction. These items will appear in both the $\varepsilon_{d, t} i, \varepsilon_{d, t}$, and $\left.\varepsilon_{d, t}\right\}$ menus.
$\mathbf{S P}$ io Set Point 1 Output Select: Select OutR or Outb.
OutR Set Point 1 is routed through Output A, Set Point 2 is routed through Output B.
Outb Set Point 1 is routed through Output B, Set Point 2 is routed through Output A.

COPY Copy Zone Parameters. Copies program parameters from one zone to the other.
nonE No copy function is performed. Factory default.
toz Copies all parameters from Zone 1 to Zone 2.
टto: Copies all parameters from Zone 2 to Zone 1.
Rodr (Option c 4, Serial Communications) Control Address: Select from'to $3 F E$. This number (hexadecimal, base 16) must match the address number used by the host computer. The value displayed is for Zone 1. The address for Zone 2 is the value for Zone 1 plus one (e.g. if horir is set to i?, Zone 1 is assigned to address i i and Zone 2 is assigned to address (G). Addresses 100,010 , and are reserved for Factory use.
sriva (Option C4, Serial Communications) Communication Baud Rate: Select 300, 1200 , 2400, 4800, 9500 , or 19200. This number must match the baud rate used by the host computer.
nit (Option C4, Serial Communications) No Activity Timer: Set from OFF or ito 99 minutes.
t-99 Maximum time between host computer accesses. If timer counts to 0 , thE tore will be displayed.
off No Activity Timer function is disabled.

SPECIFICATIONS

Input: Thermocouple.

Input Impedance:

Thermocouple $=3$ megohms minimum.
Sensor Break Protection: De-energizes control output to protect system after customer set time. (See InP1 and InP2 in Secondary Menu.)
Set Point Range: Selectable (See Range Chart Page 39).
Display: Two 4 digit, 7 segment 6.35 mm (0.25 ") high LEDs.
Control Action: Reverse (usually heating), Direct (usually cooling) selectable.
Proportional Band: 1 to $9999{ }^{\circ} \mathrm{F},{ }^{\circ} \mathrm{C}$, or counts.
Reset Time (Integral): Off or 0.1 to 99.9 minutes.
Rate Time (Derivative): Off or 0.01 to 99.99 minutes.
Cycle Rate: 1 to 80 seconds.
On - Off Differential: Adjustable $1^{\circ} \mathrm{F}, 1^{\circ} \mathrm{C}$, or 1 count to full scale in $1^{\circ} \mathrm{F}$, $1^{\circ} \mathrm{C}$, or 1 count steps.
Fuzzy Percent: 0 to 100%.
Fuzzy Rate: Off or 0.01 to 99.99 minutes.
Fuzzy Band: Off or 1 to $4000^{\circ} \mathrm{F},{ }^{\circ} \mathrm{C}$, or counts.
Accuracy: $\pm 0.25 \%$ of span, ± 1 least significant digit.
Resolution: 1 degree or 0.1 degree, selectable.
Line Voltage Stability: $\pm 0.05 \%$ over the supply voltage range.
Temperature Stability: $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical, $200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum.
Common Mode Rejection: 140 db minimum at 60 Hz .
Normal Mode Rejection: 65 db typical, 60 db at 60 Hz .
Isolation:
Relay outputs: 1500 Vac to all other inputs and outputs.
Supply Voltage: 100 to 240 Vac , nominal, $+10-15 \%, 50$ to 400 Hz . single phase; 132 to 240 Vdc, nominal, $+10-20 \%$.
Supply Voltage (Option LV): 12 to $24 \mathrm{Vdc}, \mathrm{Vac} 40-400 \mathrm{~Hz}, \pm 20 \%$.
Power Consumption: 5VA maximum.
Operating Temperature: -10 to $+55^{\circ} \mathrm{C}\left(+14\right.$ to $\left.131^{\circ} \mathrm{F}\right)$.

Storage Temperature: -40 to $+80^{\circ} \mathrm{C}\left(-40\right.$ to $\left.176{ }^{\circ} \mathrm{F}\right)$.
Humidity Conditions: 0 to 90% up to $40^{\circ} \mathrm{C}$ non-condensing, 10 to 50% at $55^{\circ} \mathrm{C}$ non-condensing.
Memory Backup: Nonvolatile memory. No batteries required.
Control Output Ratings:
Relay (Output A, Output B): SPST, 3 A @ 240 Vac resistive; 1.5A @240 Vac inductive; 1/10 HP @ 120 Vac.
Switched Voltage (non-isolated, Output A, Output B): 5 Vdc @ 20 mA .
Panel Cutout: $45.0 \mathrm{~mm} \times 22.2 \mathrm{~mm}$ (1.772" x 0.874 ").
Depth Behind Mounting Surface: 111.6 mm (4.395").
Weight: 114 g (4 oz).
Agency Approvals: UL and C-UL, file \#E83725; CE.
Front Panel Rating: IP66, Type 4.

DIAGNOSTIC ERROR MESSAGES

DISPLAY	MEANING	SP OUTPUTS	ACTION REQUIRED
No display lighted	Display is blank. Instrument is not getting power, or the supply voltage is too low.	Set point outputs inactive Alarm inactive	Check that the power supply is on, or that the external fuses aregood.
$F R$ it tESt	Fail test appears upon power up if the internal diagnostics detect a failure. This message may occur during operation if a failure is detected. Displays flash.	Set point outputs inactive Alarm inactive	The display alternates between $F A$ it $t E 5$ andoneofthefollowingmessages:FRCt dFit:Memory may becorrupted. Pressthe ENTER key and the DOWN ARROW key to start the factory defaultprocedure. Recheckcontroller programming. rEt FREt: Unrecoverable error, return to factory for service.
CHEC 5P: CHEC SPZ	This message will appear upon power up if SP1 is set outside of the SPL1/ SPH1 values or SP2 is set outside the SPL2/SPH2 values.	Set point output(s) inactive Alarm active	Correct the $\mathbf{5 P} \mathbf{i}, \mathbf{S P 2}$. or adjust the SPL i, SPL $2,5 P L 2$, or $5 P H 2$ values by programming new values.
CHEC SPL: CHEC SPH: or CHEC SPLZ CHEC SPHZ	This message appears at power up if SPL or SPH values are programmedoutside the input range ends.	Setpoint output(s) inactive Alarm inactive	Correct the SPL i, SPH i, SPL 2 , or SPHZ values by programming new values.
CHEC LorE	This message appears if the Serial Communications has timed out.	Set point outputs active Alarm inactive	Restore the communications line and switch the Lor \mathcal{E} to $\mathcal{E C}$.
SEni	Sensor Rate of Change exceeded the programmed limits set for SEmi. Appears in display of affected zone.	Setpoint output(s) inactive. Alarm Active	Check for the cause of the error. The value setting may be too slow for the process, or the sensor is intermittent. Correct the problem and press INDEX and ENTER to reset.
Mr $\varepsilon 8$ (Alternates with PV when near)	This message appears if the ambiient temperature of the control is near or out of range or RJC sensor is broken.	Set point outputs active Alarms active	Correct the ambient temperature conditions. Ventilate the area of the cabinet or check for clogged filters. If RJC broken, return to factory for service.

DIAGNOSTIC ERROR MESSAGES

DISPLAY	MEANING	SP OUTPUTS	ACTION REQUIRED
UFL* or OFL* OPEの*	Underflow or Overflow: Process value has exceeded input range ends.	Set point outputs active	Input signals may normally go above or below range ends. If not, check input and correct.
	UFL or OFL will sequence to display one of these messages if the InPt is set for a time value. For THERMOCOUPLE inputs thermocouple is open.	Setpoint output(s) inactive	To reset use the INDEX \& ENTER keys. When InPt (input fault timer) has been set for a time, the outputs will be turned off after the set time. Setting the time to OFF causes the outputs to remain active, however UFL or OFL will still be displayed. Correct or replace sensor. To reset use the INDEX \& ENTER keys.
100\%*	The sensor may be defective, heater fuse open, heater open, or the final power output device is bad.	Setpoint output(s) inactive.	Correct or replace sensor, or any element in the control loop that may have failed. Correct the problem, and reset the control by pressing the INDEX and ENTER keys, or index to LPbr and press ENTER.
CHECCRL: or ChECCALZ	Message appears when input group is selected other than the one provided from the Factory Check calibration appears as an alternating message if the instrument calibration nears tolerance edges. Check calibration appears as a flashing message ifthe instrument calibration exceeds specification.	Setpoint outputs inactive Setpoint outputs active Setpoint outputs inactive Alarmactive	Calibrate the specified input before putting Instrument in to service. Remove the instrumentfor service and / or recalibration. To reset use the INDEX \& ENTER keys. Remove the instrument for service and / or recalibration. To reset use the INDEX \& ENTER keys.

[^1]
Input Ranges (Field Selectable)

Thermocouple Types

Input Type	Type J or L*	Type K*	Type T*	Type E*
Range				
$1^{\circ} \mathrm{F}$	-100 to +1600	-200 to +2500	-350 to +750	-100 to +1800
$1^{\circ} \mathrm{C}$	-73 to +871	-129 to +1371	-212 to +398	-73 to +982

DIMENSIONS

Ω OMEGA ${ }^{\circledR}$ OMEGA Engineering
One Omega Drive
Stamford, Connecticut 06907-0047
P.O. Box 4047

Telephone: 800/848-4286; 203/359-1660
Fax: 203/359-7700
FR\# 08-195860-03

WARRANTY/DISCLAIMER

OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of $\mathbf{1 3}$ months from date of purchase. OMEGA's WARRANTY adds an additional one (1) month grace period to the normal one (1) year product warranty to cover handling and shipping time. This ensures that OMEGA's customers receive maximum coverage on each product.
If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA's Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA's WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA's control. Components in which wear is not warranted, include but are not limited to contact points, fuses, and triacs.
OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by the company will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages.
CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a "Basic Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANTY/ DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless fro m any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

RETURN REQUESTS/INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.
The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR WARRANTY RETURNS, please have the following information available BEFORE contacting OMEGA:

1. Purchase Order number under which the product was PURCHASED,
2. Model and serial number of the product under warranty, and
3. Repair instructions and/or specific problems relative to the product.

FOR NON WARRANTY REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:

1. Purchase Order number to cover the COST of the repair,
2. Model and serial number of the product, and
3. Repair instructions and/or specific problems relative to the product.
[^2]
Where Do I Find Everything I Need for Process Measurement and Control? OMEGA...Of Course!

Shop online at omega.com

TEMPERATURE
$\boxed{\nabla}$ Thermocouple, RTD \& Thermistor Probes, Connectors, Panels \& Assemblies
\checkmark Wire: Thermocouple, RTD \& Thermistor
\checkmark Calibrators \& Ice Point References
\checkmark Recorders, Controllers \& Process Monitors

- Infrared Pyrometers

PRESSURE, STRAIN AND FORCE

T Transducers \& Strain Gages
\checkmark Load Cells \& Pressure Gages
\square Displacement Transducers
(Instrumentation \& Accessories

FLOW/LEVEL

$\boxed{*}$ Rotameters, Gas Mass Flowmeters \& Flow Computers
\square Air Velocity Indicators
(Turbine/Paddlewheel Systems
$\boxed{\square}$ Totalizers \& Batch Controllers

pH/CONDUCTIVITY

\square pH Electrodes, Testers \& Accessories
(Benchtop/Laboratory Meters
\checkmark Controllers, Calibrators, Simulators \& Pumps
$\boxed{\square}$ Industrial pH \& Conductivity Equipment

DATA ACQUISITION

\checkmark Data Acquisition \& Engineering Software
\square Communications-Based Acquisition Systems
$\boxed{\square}$ Plug-in Cards for Apple, IBM \& Compatibles
$\boxed{\square}$ Datalogging Systems
\square Recorders, Printers \& Plotters

HEATERS

$\boxed{\square}$ Heating Cable
\checkmark Cartridge \& Strip Heaters
\checkmark Immersion \& Band Heaters
\checkmark Flexible Heaters

- Laboratory Heaters

ENVIRONMENTAL
 MONITORING AND CONTROL

$\boxed{\square}$ Metering \& Control Instrumentation
\checkmark Refractometers
\downarrow Pumps \& Tubing
$\boxed{*}$ Air, Soil \& Water Monitors
\checkmark Industrial Water \& Wastewater Treatment
$\square \mathrm{pH}$, Conductivity \& Dissolved Oxygen Instruments

[^0]: It is the policy of OMEGA Engineering, Inc. to comply with all worldwide safety and EMC/EMI regulations that apply. OMEGA is constantly pursuing certification of its products to the European New Approach Directives. OMEGA will add the CE mark to every appropriate device upon certification.
 The information contained in this document is believed to be correct, but OMEGA accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.
 WARNING: These products are not designed for use in, and should not be used for, human applications.

[^1]: * Message appears in the display of the affected zone. The output for that zone will be inactive.

[^2]: OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.
 OMEGA is a registered trademark of OMEGA ENGINEERING, INC.
 © Copyright 2006 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.

